Around the twofold axes there are quadrangles of O atoms with short $\mathrm{O} \cdots \mathrm{O}$ distances (Fig. 2) which have been assumed to represent hydrogen bonds and are given by dashed lines in Figs. 3 and 4. Fig. 3 depicts the connection of the molecules by hydrogen bonds in the ac plane, whereas Fig. 4 illustrates the way in which the hydrogen-bonding system is extended in the ($\mathbf{a}+\mathbf{b}$) and ($\mathbf{a}-\mathbf{b}$) directions, so that a three-dimensional network is formed. Fig. 2 shows that the shortest $\mathrm{O} \cdots \mathrm{O}$ distance occurs between atoms of type $\mathrm{O}(1)$ around which the largest deviations from tetrahedral angular values are observed. The hydrogen-bonding system is hardly affected by the disorder of β, as the O atoms of the superimposed molecules nearly coincide (Fig. 1). Because of the disorder the deformation density of α could not be determined accurately.

Part of this work has been supported by the Foundation for Fundamental Research of Matter with X-rays and Electron Rays (FOMRE) with financial aid
from the Netherlands Organization for the Advancement of Pure Research (ZWO). The computations have been performed at the Computer Center of the University of Groningen.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Ruysink, A. F. J. \& Vos, A. (1974). Acta Cryst. B30, 19972002.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Wal, H. R. van der \& Vos, A. (1979). Acta Cryst. In the press.
XRAY system (1976). Dutch version of the XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 1732-1735

($1 S, 3 R, 4 S$)-1-Methyl-3-(4-methoxyphenoxymethyl)-4-phenylpiperidinium Chloride (FG4963): a Selective Inhibitor of Serotonin Uptake

By Peter G. Jones* and O. Kennard \dagger
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England
and Alan S. Horn
Department of Pharmacy, University of Groningen, Groningen, The Netherlands

(Received 17 February 1979; accepted 27 March 1979)

Abstract

C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}^{+} . \mathrm{Cl}^{-}, M_{r}=347 \cdot 89\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=6.004$ (4), $b=11.398$ (10), $c=$ 28.587 (17) $\AA, U=1956 \AA^{3}, Z=4, D_{x}=1.180 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mu(\mathrm{Cu} K \alpha)=1.7 \mathrm{~mm}^{-1}$. The structure was refined to $R=0.041$ for 2520 unique reflexions. Absolute configurations at $\mathrm{N}(1)$ and $\mathrm{C}(4)$ are S, and at $\mathrm{C}(3) R$. Cl^{-}is hydrogen bonded to the positively charged N atom.

Introduction. The tricyclic antidepressants such as imipramine (Post, Kennard \& Horn, 1975) and chlorimipramine (Post \& Horn, 1977) inhibit the neuronal uptake of the biogenic amines noradrenaline (NA) and serotonin (5 -hydroxytryptamine, 5 -HT); this property may be related to their clinical mode of action (Horn,

[^0]1976). There is currently interest in developing more selective inhibitors of biogenic amine uptake in the hope of learning more about the neurochemical mechanisms involved in depressive states. A recently developed drug which has a more selective effect on $5-\mathrm{HT}$ than on NA uptake is ($3 R, 4 S$)-1-methyl-3-(4-methoxyphenoxy-methyl)-4-piperidine hydrochloride (I), which has the trivial name FG4963 (Lassen, Petersen, Kjellberg \& Olsson, 1975). We report here the structure of this compound.

(I)
© 1979 International Union of Crystallography

A crystal in the form of a tapering needle, $0.8 \times$ $0.15 \times 0.07 \mathrm{~mm}$, was used for data collection. 3651 reflexions (including a full set of Friedel opposites) were measured in the range $3^{\circ}<2 \theta<116^{\circ}$, on a Syntex $P 2_{1}$ diffractometer with monochromated $\mathrm{Cu} K \alpha$ radiation. Cell dimensions were obtained by a least-squares procedure from 15 strong reflexions. Systematic absences, $h 00, h$ odd; $0 k 0, k$ odd; and $00 l, l$ odd, indicated space group $P 2,2,2$. After application of $L p$ corrections, averaging equivalent reflexions gave 2521 which were unique with $F>4 \sigma(F)$.

Table 1. Atom coordinates ($\times 10^{4}$)
Overall isotropic temperature factor for H atoms: 0.088 (2) \AA^{2}.

		z	
$\mathrm{Cl}(1)$	$8457(1)$	$10827(1)$	$7549(1)$
$\mathrm{N}(1)$	$5489(3)$	$8674(2)$	$7539(1)$
$\mathrm{C}(11)$	$5230(6)$	$8355(3)$	$7040(1)$
$\mathrm{C}(2)$	$6541(4)$	$7698(2)$	$7805(1)$
$\mathrm{C}(3)$	$6938(3)$	$8051(2)$	$8312(1)$
$\mathrm{C}(4)$	$4683(4)$	$8369(2)$	$8543(1)$
$\mathrm{C}(5)$	$3598(4)$	$9349(2)$	$8257(1)$
$\mathrm{C}(6)$	$3292(4)$	$9004(2)$	$7750(1)$
$\mathrm{C}(31)$	$8194(4)$	$7077(2)$	$8562(1)$
$\mathrm{O}(32)$	$6738(3)$	$6090(1)$	$8600(1)$
$\mathrm{C}(21)$	$7634(4)$	$5118(2)$	$8820(1)$
$\mathrm{C}(22)$	$9682(5)$	$4658(2)$	$8703(1)$
$\mathrm{C}(23)$	$10433(5)$	$3647(2)$	$8924(1)$
$\mathrm{C}(24)$	$9142(4)$	$3101(2)$	$9250(1)$
$\mathrm{C}(25)$	$7092(4)$	$3565(2)$	$9372(1)$
$\mathrm{C}(26)$	$6357(4)$	$4583(2)$	$9157(1)$
$\mathrm{O}(33)$	$9765(4)$	$2095(2)$	$9489(1)$
$\mathrm{C}(34)$	$11672(6)$	$1488(3)$	$9324(1)$
$\mathrm{C}(41)$	$4912(4)$	$8692(2)$	$9055(1)$
$\mathrm{C}(42)$	$6339(5)$	$9581(2)$	$9209(1)$
$\mathrm{C}(43)$	$6503(5)$	$9844(2)$	$9680(1)$
$\mathrm{C}(44)$	$5269(5)$	$9260(2)$	$10008(1)$
$\mathrm{C}(45)$	$3848(5)$	$8384(3)$	$9860(1)$
$\mathrm{C}(46)$	$3662(4)$	$8103(2)$	$9390(1)$
$\mathrm{H}(11)$	6570	9430	7559
$\mathrm{H}(111)$	4707	9118	6845
$\mathrm{H}(112)$	3986	7675	7008
$\mathrm{H}(113)$	6796	8040	6903
$\mathrm{H}(21)$	5457	6942	7795
$\mathrm{H}(22)$	8117	7479	7644
$\mathrm{H}(31)$	7969	8825	8336
$\mathrm{H}(41)$	3624	7604	8540
$\mathrm{H}(51)$	4642	10119	8273
$\mathrm{H}(52)$	1988	9546	8406
$\mathrm{H}(61)$	2596	9735	7560
$\mathrm{H}(62)$	2171	8265	7730
$\mathrm{H}(311)$	8690	7368	8906
$\mathrm{H}(312)$	9655	6839	8363
$\mathrm{H}(221)$	10698	5081	8440
$\mathrm{H}(231)$	12049	3293	8838
$\mathrm{H}(251)$	6074	3137	9632
$\mathrm{H}(261)$	4772	4958	9255
$\mathrm{H}(341)$	11922	692	9522
$\mathrm{H}(342)$	13099	2055	9367
$\mathrm{H}(343)$	11470	1275	8958
$\mathrm{H}(421)$	7321	10065	8958
$\mathrm{H}(431)$	7632	10527	9791
$\mathrm{H}(441)$	5404	9479	10374
$\mathrm{H}(451)$	2867	7910	10114
$\mathrm{H}(461)$	2530	7418	9282

The structure was solved by multisolution tangent refinement with $S H E L X$. A starting set of eight reflexions was chosen from a convergence map; this provided 2^{7} phase permutations. The best E map (calculated from $299 E>1 \cdot 2$) showed all non-H

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(11)-\mathrm{N}(1) \quad 1$.	1.481 (4)	$\mathrm{C}(2)-\mathrm{N}(1) \quad 1$.	. 488 (4)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1$.	1.525 (5)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.5$. 548 (5)
$\mathrm{C}(3)-\mathrm{C}(31) \quad 1 \cdot$	1.519 (5)	$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.5$. 529 (5)
C(4)-C(41) 1 .	1.516 (5)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.5$. 512 (5)
$\mathrm{C}(6)-\mathrm{N}(1) \quad 1$.	1.499 (4)	$\mathrm{C}(31)-\mathrm{O}(32) \quad 1.4$. 429 (4)
$\mathrm{C}(21)-\mathrm{O}(32) \quad 1$.	$1 \cdot 382$ (4)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.37$	1.377 (5)
$\mathrm{C}(21)-\mathrm{C}(26) \quad 1$.	$1 \cdot 375$ (4)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.3$	$1 \cdot 390$ (5)
$\mathrm{C}(23)-\mathrm{C}(24) \quad 1$.	1.363 (5)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1.38$	1.384 (5)
$\mathrm{C}(24)-\mathrm{O}(33) \quad 1$.	$1 \cdot 386$ (4)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1.38$. 385 (5)
$\mathrm{C}(34)-\mathrm{O}(33) \quad 1$.	1.418 (5)	C(41)-C(42) 1.3	$1 \cdot 397$ (5)
C(41)-C(46) 1.	1.389 (4)	$\mathrm{C}(42)-\mathrm{C}(43) \quad 1.3$	$1 \cdot 383$ (5)
C(43)-C(44) 1.	1.369 (5)	C(44)-C(45) 1.38	$1 \cdot 380$ (5)
$\mathrm{C}(45)-\mathrm{C}(46) \quad 1$.	$1 \cdot 387$ (4)		
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2) \quad 110.6$ (3)		$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(6) \quad 111.0$ (3)	
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)$	$110 \cdot 8$ (3)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$110 \cdot 8$ (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	109.3 (3)	C(2)-C(3)-C(31)	109.3 (3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)$	113.9 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.5 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)$	112.9 (3)	C(5)-C(4)-C(41)	112.2 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	111.9 (3)	$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$110 \cdot 1$ (3)
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{O}(32)$	2) 107.9 (3)	$\mathrm{C}(31)-\mathrm{O}(32)-\mathrm{C}(21)$	1) $115 \cdot 3$ (3)
$\mathrm{O}(32)-\mathrm{C}(21)-\mathrm{C}(22)$	22) $122 \cdot 8$ (3)	$\mathrm{O}(32)-\mathrm{C}(21)-\mathrm{C}(26)$	6) 117.2 (3)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	(26) 119.9 (3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	3) 119.6 (3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24$	(24) 120.4 (4)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	5) 120.2 (3)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(33$	33) $124 \cdot 2$ (3)	C(25)-C(24)-O(33)	3) $115 \cdot 6$ (3)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26$	26) 119.5 (3)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	5) $120 \cdot 3$ (3)
$\mathrm{C}(24)-\mathrm{O}(33)-\mathrm{C}(34$	34) $117 \cdot 2$ (3)	C(4)-C(41)-C(42)) $122 \cdot 3$ (3)
C(4)-C(41)-C(46)	6) 119.9 (3)	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	6) 117.7 (3)
C(41)-C(42)-C(43	43) $120 \cdot 5$ (3)	C(42)-C(43)-C(44)	4) 121.5 (4)
C(43)-C(44)-C(45)	45) 118.5 (3)	C(44)-C(45)-C(46)	6) $120 \cdot 9$ (3)
C(41)-C(46)-C(45	45) $120 \cdot 9$ (3)		

Table 3. Selected torsion angles $\left({ }^{\circ}\right)$

Sign convention as defined by Klync \& Prelog (1960).

$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$176.6(3)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-59.9(3)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-178.9(3)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$57.7(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$59.6(3)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$-175.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-57.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)$	$178.0(3)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-179.7(3)$
$\mathrm{C}(31)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)$	$55.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{O}(32)$	$-68.3(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{O}(32)$	$54.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$56.9(3)$
$\mathrm{C}(41)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-177.8(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	$55 \cdot 6(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(4)-\mathrm{C}(46)$	$-125.0(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	$-67.3(4)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(41)-\mathrm{C}(46)$	$112.1(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	$-57.2(3)$
$\mathrm{C}(3)-\mathrm{C}(31)-\mathrm{O}(32)-\mathrm{C}(21)$	$179.9(3)$
$\mathrm{C}(31)-\mathrm{O}(32)-\mathrm{C}(21)-\mathrm{C}(22)$	$-49.1(4)$
$\mathrm{C}(31)-\mathrm{O}(32)-\mathrm{C}(21)-\mathrm{C}(26)$	$133.1(3)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(33)-\mathrm{C}(34)$	$-11.7(5)$
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{O}(33)-\mathrm{C}(34)$	$170.1(3)$

atoms. Isotropic and anisotropic refinement (to $R 0.14$ and 0.08 respectively, followed by a difference synthesis, revealed all H atoms. These were employed in all further refinements with $X-\mathrm{H}(X=\mathrm{C}, \mathrm{N})$ and $\angle \mathrm{H}-\mathrm{C}-\mathrm{H}$ fixed at $1.08 \AA$ and 109.5°. The absolute configuration was established when one enantiomorph refined to an R factor 1% lower than the other.

In the final stages, an overall isotropic temperature factor was employed for the H atoms, and one reflexion clearly in error was omitted. The final $R^{\prime}=$ $\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|$ was 0.046 , with a corresponding R of 0.041 . The weighting scheme was $w=1 /\left\lceil\sigma^{2}(F)+\right.$ $g F^{2}$, where g refined to $0 \cdot 00069$; this gave mean $w \Delta^{2}$ varying only slightly with $\sin \theta$ or $F_{o} \mid$. Slow refinement of the rigid methyl groups may indicate some rotational disorder, but there were no significant peaks in the methyl regions of a final difference synthesis (largest peak 0.4 e \AA^{-3}, associated with the Cl atom).

Fig. 1. Perspective view of the cation of FG4963, showing the atom numbering. H atoms are numbered such that $\mathrm{H}(m n)$ is the nth H on $X(m)(X=\mathrm{C}$ or N$)$.

Fig. 2. Packing diagram projected down $a ; \mathrm{H}$ atoms have been omitted for clarity.

Final atomic coordinates are given in Table 1, bond lengths and angles and torsion angles in Tables 2 and 3. Diagrams of the structure are given in Figs. 1 and 2.*

Discussion. Unlike the classical tricyclic antidepressants, FG4963 has a selective action on biogenic amine uptake, viz it selectively inhibits 5 -HT uptake (Lassen et al., 1975). Despite this selectivity, it has the same disadvantage as imipramine and chlorimipramine as regards discussion of conformation-activity relationships; it is a flexible molecule, and thus one cannot be sure that the crystal structure will correspond to the preferred conformation at the biological receptor. We have however determined various nonbonded distances (Table 4) that may be of significance when they can be compared with similar parameters in other more rigid molecules with the same pharmacological activity, such as Org. 6582 (Jones, Kennard \& Horn, 1979). Results from several more compounds are needed before a meaningful comparison can be made. MO calculations on FG4963 may also be useful, to assess the energy of its various possible conformations.

Absolute configurations at $\mathrm{N}(1)$ and $\mathrm{C}(4)$ are S, and at $C(3) R$, consistent with the previously known relative stereochemistry at $C(3)$ and $C(4)$. Only one of the two possible isomers formed on protonating $N(1)$ has crystallized.

The Cl^{-}ion is hydrogen bonded to the positively charged N atom, with $\mathrm{H}(11) \cdots \mathrm{Cl}(1) 1.96, \mathrm{~N}(1) \ldots$ $\mathrm{Cl}(1) 3.03 \AA$. There are no other unusually short nonbonded distances.

We thank the MRC for financial support, the SRC for provision of the diffractometer and Dr R. F. Squires of Ferrosan Laboratories, Copenhagen, for a sample of FG4963. The figures were drawn with PLUTO written by Dr W. D. S. Motherwell; all other crystallographic programs used were written by Professor G. M. Sheldrick.

[^1]Table 4. Selected non-bonded distances (\AA)
E.s.d.'s are not greater than $0.01 \AA$.

$N(1)$ to centroids of aromatic rings:	$5.72\lfloor\mathrm{C}(41)$ et seq. $]$
	$6.96\lfloor\mathrm{C}(21)$ et seq. \rfloor
$N(1)$ to planes of aromatic rings:	$0.16\lfloor\mathrm{C}(41)$ et seq. $]$
	$0.94\lfloor\mathrm{C}(21)$ et seq. $]$

$\begin{array}{lr}\mathrm{N}(1) \cdots \mathrm{O}(33) & 9.69 \\ \mathrm{~N}(1) \cdots \mathrm{C}(34) & 10.33\end{array}$

References

Horn, A. S. (1976). Postgrad. Med. J. 52, 25-30.
Jones, P. G., Kennard, O. \& Horn, A. S. (1979). Acta Cryst. B35, 1512-1515.
Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.

Lassen, J. B., Petersen, E., Kjellberg, B. \& Olsson, S. O. (1975). Eur. J. Pharmacol. 32, 108-115.

Post, M. L. \& Horn, A. S. (1977). Acta Cryst. B33, 25902595.

Post, M. L., Kennard, O. \& Horn, A. S. (1975). Acta Cryst. B31, 1008-1013.

Acta Cryst. (1979). B35, 1735-1737

(2S,4R)-4-Ethoxy-2-phthalimido- γ-butyrolactone

By M. Sikirica and I. Vicković
Laboratory of General and Inorganic Chemistry, The University, Ulica socijalističke revolucije 8, 4100 Zagreb, Yugoslavia
and D. Viterbo
Istituto di Chimica-Fisica, Università, Corso M. D'Azeglio 48, 10125 Torino, Italy

(Received 19 February 1979; accepted 2 April 1979)

Abstract

C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=$ 11.940 (3), $b=15.725$ (3), $c=7.018$ (3) \AA, $Z=4, V$ $=1317.68 \AA^{3}, D_{c}=1.135 \mathrm{Mg} \mathrm{m}^{-3}$. The structure has been refined to $R=0.071$ for 431 reflexions and 120 parameters. The molecular conformation may be described in terms of three planes: the phthalimido group, the lactone ring and the ethoxy side chain. The phthalimido and ethoxy planes make angles of 86.5 and 57.0° respectively with the main plane of the γ butyrolactone ring. The almost planar γ-butyrolactone ring has substituents in positions 2 and 4 which are trans to each other, thus indicating that in this case the generally less stable trans isomer is preferred.

Introduction. In the continuation of our work on the stereochemistry of 2,4 -disubstituted γ-butyrolactones (Sikirica \& Vicković, 1977) we have undertaken the crystal structure analysis of the title compound.

The compound was prepared by cyclization of $(2 S)$ 3 -formyl-2-phthalimidopropionic acid (Deljac, 1978) and recrystallized from ethanol as prismatic crystals.

The cell parameters were determined and refined from diffractometer data. The space group is $P 2_{1} 2_{1} 2_{1}$ with four molecules in the unit cell. The intensities were collected, at room temperature, on a Philips PW 1100/10 four-circle diffractometer ($\mathrm{Cu} K \alpha$ radiation, λ $=1.5418 \AA$) using the $\theta-2 \theta$ scanning technique: 9.3° $\leq 2 \theta \leq 133.4^{\circ}$; only 431 independent reflexions were measured, the option of skipping the measurement of 'weak' reflexions having been used.

An attempt to solve the structure by means of the mULTAN procedure (Declercq, Hull, Germain, Les-
singer, Main \& Woolfson, 1976), using the measured reflexions only, was unsuccessful. The observed amplitudes were then completed by introducing the unobserved reflexions, within $\sin \theta / \lambda=0.6 \AA^{-1}$ (66.9% of the total), with statistically evaluated amplitudes (Vicković \& Viterbo, 1979) and the solution was straightforward. With $199 E^{\prime}$ s $\left(E_{\text {min }}=1 \cdot 24\right)$ and $2000 \sum_{2}$ relationships, 32 sets of phases were generated. The E map computed with the set having the best figures of merit revealed all 20 non-hydrogen atoms. The isotropic refinement was carried out by fullmatrix least squares, using the $C R Y L S Q$ program of the XRAY 72 system (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). Following the suggestion of Hamilton (1955), the statistically evaluated reflexions were also used in the refinement, being treated as 'lessthans'. The H atoms were located in a difference map computed in the final stages of the refinement. Their positions, but not their thermal parameters, were allowed to vary in the subsequent refinement. The final discrepancy factor was $R=0.071$. The weighting function $w=1 / \sigma^{2}\left(\left|F_{o}\right|\right)$ was used, where $\sigma^{2}\left(\left|F_{o}\right|\right)$ is the square of the standard deviation of the observed structure factor.*
The atomic coordinates and isotropic thermal parameters as obtained from the final refinement are given in Table 1.

[^2]
[^0]: * Present address: Anorganisch-Chemisches Institut der Universität Göttingen, Tammannstr. 4, 3400 Göttingen, Federal Republic of Germany.
 \dagger External Staff, Medical Research Council.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34340 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34376 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 (c) 1979 International Union of Crystallography

